Teflon-coated microfiber resonator with weak temperature dependence
نویسندگان
چکیده
منابع مشابه
Teflon-coated microfiber resonator with weak temperature dependence.
A temperature insensitive three-turn microfiber coil resonator (MCR) is demonstrated by embedding it in Teflon with opposite thermo-optic coefficient. The temperature dependence of a MCR strongly depends on the microfiber size which controls the ratio of thermal effect contributions from silica and polymer. Fabricated from a ~3μm-diameter microfiber, the temperature dependence of our MCR is com...
متن کاملNumerical Calculation of Seawater Temperature Sensing Based on Polydimethylsiloxane-Coated Microfiber Knot Resonator
A seawater temperature sensing method based on polydimethylsiloxane-coated (PDMS-coated) microfiber knot resonator (MKR) is proposed, which has the advantages of high sensitivity and weak salinity dependence. The dependences of the temperature sensitivity on fiber diameter, coating thickness and probing wavelength are theoretically investigated and the range of coating thickness for weak salini...
متن کاملTemperature Sensing in Seawater Based on Microfiber Knot Resonator
Ocean internal-wave phenomena occur with the variation in seawater vertical temperature, and most internal-wave detections are dependent on the measurement of seawater vertical temperature. A seawater temperature sensor based on a microfiber knot resonator (MKR) is designed theoretically and demonstrated experimentally in this paper. Especially, the dependences of sensing sensitivity on fiber d...
متن کاملDual-rail nanobeam microfiber-coupled resonator.
A microfiber-coupled dual-rail nanobeam resonator is proposed and demonstrated. The dual-rail scheme is employed to encourage the overlap between the light emitter and the air mode. The one-dimensional resonant cavity is formed by contacting a curved microfiber with the dual-rail nanobeam. The finite width of the dual-rail nanobeam turns out to be advantageous for both out-coupling with the mic...
متن کاملPossible weak temperature dependence of electron dephasing
The first-principle theory of electron dephasing by disorder-induced two state fluctuators is developed. There exist two mechanisms of dephasing. First, dephasing occurs due to direct transitions between the defect levels caused by inelastic electron-defect scattering. The second mechanism is due to violation of the time reversal symmetry caused by time-dependent fluctuations of the scattering ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2011
ISSN: 1094-4087
DOI: 10.1364/oe.19.022923